terms |
isotrivial |
As a noun terms
is .
As an adjective isotrivial is
(mathematics) describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
isomorphic |
isotrivial |
In mathematics|lang=en terms the difference between isomorphic and isotrivial
is that
isomorphic is (mathematics) related by an isomorphism; having a structure-preserving one-to-one correspondence while
isotrivial is (mathematics) describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
As adjectives the difference between isomorphic and isotrivial
is that
isomorphic is (mathematics) related by an isomorphism; having a structure-preserving one-to-one correspondence while
isotrivial is (mathematics) describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
fibre |
isotrivial |
In mathematics terms the difference between fibre and isotrivial
is that
fibre is the preimage of a given point in the range of a map while
isotrivial is describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
As a noun fibre
is (
single elongated piece of material) A single piece of a given material, elongated and roughly round in cross-section, often twisted with other fibres to form thread.
As an adjective isotrivial is
describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
curve |
isotrivial |
As a verb curve
is .
As an adjective isotrivial is
(mathematics) describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
morphism |
isotrivial |
As a noun morphism
is (mathematics|formally) an arrow in a category.
As an adjective isotrivial is
(mathematics) describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
surface |
isotrivial |
As a verb surface
is .
As an adjective isotrivial is
(mathematics) describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
projective |
isotrivial |
In mathematics terms the difference between projective and isotrivial
is that
projective is describing those properties of a figure that are invariant upon projection while
isotrivial is describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.
As adjectives the difference between projective and isotrivial
is that
projective is projecting outward while
isotrivial is describing a smooth projective surface having a morphism onto a curve such that all smooth fibres are isomorphic to each other.